Numerical solution of the forced Duffing equations using Legendre multiwavelets
Authors
Abstract:
A numerical technique based on the collocation method using Legendre multiwavelets are presented for the solution of forced Duffing equation. The operational matrix of integration for Legendre multiwavelets is presented and is utilized to reduce the solution of Duffing equation to the solution of linear algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique.
similar resources
numerical solution of the forced duffing equations using legendre multiwavelets
a numerical technique based on the collocation method using legendre multiwavelets arepresented for the solution of forced duffing equation. the operational matrix of integration forlegendre multiwavelets is presented and is utilized to reduce the solution of duffing equationto the solution of linear algebraic equations. illustrative examples are included to demonstratethe validity...
full textNumerical Solution of Functional Differential Equations using Legendre Wavelet Method
In this paper, the objective is to solve the functional differential equations in the following form using Legendre Wavelet Method (LWM), 0 f 0 u(t)=f(t ,u( t) ,u( (t))), t t t u( t)= (t), t t ′ α ≤ ≤ φ ≤ (1) where ƒ: [t0, tƒ]×R→R is a smooth function, α(t) is a continuous function on [t0, tƒ] and φ(t)∈C represents the initial point or the initial data. In the present paper, the most impo...
full textNumerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis
In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...
full textNumerical solution of nonlinear integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions
In this paper, we use a combination of Legendre and Block-Pulse functionson the interval [0; 1] to solve the nonlinear integral equation of the second kind.The nonlinear part of the integral equation is approximated by Hybrid Legen-dre Block-Pulse functions, and the nonlinear integral equation is reduced to asystem of nonlinear equations. We give some numerical examples. To showapplicability of...
full textNumerical Solution of Interval Volterra-Fredholm-Hammerstein Integral Equations via Interval Legendre Wavelets Method
In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examp...
full textMy Resources
Journal title
volume 5 issue 1
pages 43- 55
publication date 2017-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023